// cargo-deps: hsl, image, csv = "1.0.0-beta.4", serde, serde_derive // ~~~ PUBLIC DOMAIN ~~~ // I, the copyright holder of this work, hereby release it // into the public domain. This applies worldwide. // In case this is not legally possible, I grant any entity // the right to use this work for any purpose, without any // conditions, unless such conditions are required by law. extern crate csv; extern crate hsl; extern crate image; extern crate serde; #[macro_use] extern crate serde_derive; use std::collections::{BTreeSet, HashMap}; use std::io; #[derive(Debug, Deserialize)] #[serde(rename_all = "camelCase")] struct Tile { tile_x: usize, tile_y: usize, create_time: u64, modify_count: u64, modify_time: u64, access_count: u64, access_time: u64, } // Torus size (in tiles). const TORUS_SZ: u32 = 512; // Tile width/height (in pixels). const TILE_W: u32 = 8; const TILE_H: u32 = 5; fn main() { // Read the `torus.csv` into a 2D array of `(access, modify)`. // Also track the values we see in `BTreeSet` (for ordering). let mut tiles = [[(0, 0); TORUS_SZ as usize]; TORUS_SZ as usize]; let mut ord_a = BTreeSet::new(); let mut ord_m = BTreeSet::new(); for result in csv::Reader::from_reader(io::stdin()).deserialize() { let Tile { create_time, modify_time, access_count: mut a, modify_count: mut m, tile_x: x, tile_y: y, .. } = result.unwrap(); // Handle old migrated values. if modify_time == create_time && m > 0 { a += 1; m = 0; } ord_a.insert(a); ord_m.insert(m); tiles[y][x] = (a, m); } // Normalize all values by mapping them to equally spaced values in [0, 1]. let normal_map = |ord: BTreeSet| -> HashMap { ord.iter().enumerate().map(|(i, &x)| { (x, i as f64 / (ord.len() - 1) as f64) }).collect() }; let normal_a = normal_map(ord_a); let normal_m = normal_map(ord_m); // Compose the heatmap image in-memory from the 2D array. let mut heatmap = image::ImageBuffer::new(TORUS_SZ * TILE_W, TORUS_SZ * TILE_H); let red = hsl::HSL::from_rgb(&[255, 0, 0]).h; // let green = hsl::HSL::from_rgb(&[0, 255, 0]).h; // let blue = hsl::HSL::from_rgb(&[0, 0, 255]).h; let yellow = hsl::HSL::from_rgb(&[255, 255, 0]).h; for y in 0..TORUS_SZ { for x in 0..TORUS_SZ { // Get and normalize the values. let (a, m) = tiles[y as usize][x as usize]; let a = normal_a[&a].powf(1.0 / 2.0); let m = normal_m[&m].powf(1.0 / 3.0); // access => luminosity let l = ((a + m) * 0.5).min(0.7); // modify => saturation + hue (grey -> red -> yellow) let interp = |a, b, x| a * (1.0 - x) + b * x; let h = interp(red, yellow, m.powf(4.0)); let s = m; let (r, g, b) = hsl::HSL { h, s, l }.to_rgb(); let rgb = image::Rgb([r, g, b]); let coord = |x, dx, px| ((x * 2 + TORUS_SZ + 1) * px / 2 + dx) % (TORUS_SZ * px); for dy in 0..TILE_H { let y = coord(y, dy, TILE_H); for dx in 0..TILE_W { let x = coord(x, dx, TILE_W); heatmap.put_pixel(x, y, rgb); } } } } // Save the heatmap image. heatmap.save("heatmap.png").unwrap(); }