// cargo-deps: hsl, image, csv = "1.0.0-beta.4", serde, serde_derive extern crate csv; extern crate hsl; extern crate image; extern crate serde; #[macro_use] extern crate serde_derive; use std::collections::BTreeSet; use std::io; #[derive(Debug, Deserialize)] #[serde(rename_all = "camelCase")] struct Tile { tile_x: usize, tile_y: usize, create_time: u64, modify_count: u64, modify_time: u64, access_count: u64, access_time: u64, } // Torus size (in tiles). const TORUS_SZ: u32 = 512; // Tile width/height (in pixels). const TILE_W: u32 = 4; const TILE_H: u32 = 1; fn main() { // Read the `torus.csv` into a 2D array of `(access, modify)`. // Also track the values we see in `BTreeSet` (for ordering). let mut tiles = [[(0, 0); TORUS_SZ as usize]; TORUS_SZ as usize]; let mut ord_a = BTreeSet::new(); let mut ord_m = BTreeSet::new(); for result in csv::Reader::from_reader(io::stdin()).deserialize() { let Tile { access_count: a, modify_count: m, tile_x: x, tile_y: y, .. } = result.unwrap(); // HACK(eddyb) ignore 0,0 for analysis - too busy. if (x, y) != (0, 0) { ord_a.insert(a); ord_m.insert(m); } tiles[y][x] = (a, m); } // Extract the maximum values. // TODO(eddyb) chunk values for better representation. let max_a = ord_a.iter().next_back().cloned().unwrap_or(0) as f64; let max_m = ord_m.iter().next_back().cloned().unwrap_or(0) as f64; // Compose the heatmap image in-memory from the 2D array. let mut heatmap = image::ImageBuffer::new(TORUS_SZ * TILE_W, TORUS_SZ * TILE_H); let red = hsl::HSL::from_rgb(&[255, 0, 0]).h; // let green = hsl::HSL::from_rgb(&[0, 255, 0]).h; // let blue = hsl::HSL::from_rgb(&[0, 0, 255]).h; for y in 0..TORUS_SZ { for x in 0..TORUS_SZ { let (a, m) = tiles[y as usize][x as usize]; let a = (a as f64 / max_a).min(1.0).powf(0.1); let m = (m as f64 / max_m).min(1.0).powf(0.1); // access => luminosity, modify => hue (green -> red) // let h = green * (1.0 - m) + red * m; // let s = 1.0; // let l = a.max(m) * 0.5; // access => luminosity, modify => saturation (grey -> red) let h = red; let s = m; let l = a * 0.5; let (r, g, b) = hsl::HSL { h, s, l }.to_rgb(); let rgb = image::Rgb([r, g, b]); let coord = |x, dx, px| ((x * 2 + TORUS_SZ + 1) * px / 2 + dx) % (TORUS_SZ * px); for dy in 0..TILE_H { let y = coord(y, dy, TILE_H); for dx in 0..TILE_W { let x = coord(x, dx, TILE_W); heatmap.put_pixel(x, y, rgb); } } } } // Save the heatmap image. heatmap.save("heatmap.png").unwrap(); }