// cargo-deps: hsl, image, csv = "1.0.0-beta.4", serde, serde_derive extern crate hsl; extern crate image; extern crate csv; extern crate serde; #[macro_use] extern crate serde_derive; use std::collections::BTreeSet; use std::io; #[derive(Debug, Deserialize)] #[serde(rename_all = "camelCase")] struct Tile { tile_x: usize, tile_y: usize, create_time: u64, modify_count: u64, modify_time: u64, access_count: u64, access_time: u64 } // Torus size. const W: u32 = 512; // Tile width/height in pixels. const TW: u32 = 4; const TH: u32 = 1; fn main() { // Read the `torus.csv` into a 2D array of `(access, modify)`. // Also track the values we see in `BTreeSet` (for ordering). let mut tiles = [[(0, 0); W as usize]; W as usize]; let mut sa = BTreeSet::new(); let mut sm = BTreeSet::new(); let mut rdr = csv::Reader::from_reader(io::stdin()); for tile in rdr.deserialize().map(Result::::unwrap) { let a = tile.access_count; let m = tile.modify_count; // HACK(eddyb) ignore 0,0 for analysis - too busy. if (tile.tile_x, tile.tile_y) != (0, 0) { sa.insert(a); sm.insert(m); } tiles[tile.tile_y][tile.tile_x] = (a, m); } // Extract the maximum values. // TODO(eddyb) chunk values for better representation. let ma = sa.iter().next_back().cloned().unwrap_or(0) as f64; let mm = sm.iter().next_back().cloned().unwrap_or(0) as f64; // Compose the heatmap image in-memory from the 2D array. let mut heatmap = image::ImageBuffer::new(W * TW, W * TH); let red = hsl::HSL::from_rgb(&[255, 0, 0]).h; // let green = hsl::HSL::from_rgb(&[0, 255, 0]).h; // let blue = hsl::HSL::from_rgb(&[0, 0, 255]).h; for y in 0..W { for x in 0..W { let (a, m) = tiles[y as usize][x as usize]; let a = (a as f64 / ma).min(1.0).powf(0.1); let m = (m as f64 / mm).min(1.0).powf(0.1); // access => luminosity, modify => hue (green -> red) // let h = green * (1.0 - m) + red * m; // let s = 1.0; // let l = a.max(m) * 0.5; // access => luminosity, modify => saturation (grey -> red) let h = red; let s = m; let l = a * 0.5; let (r, g, b) = hsl::HSL { h, s, l }.to_rgb(); let rgb = image::Rgb([r, g, b]); for dy in 0..TH { let y = ((y * 2 + W + 1) * TH / 2 + dy) % (W * TH); for dx in 0..TW { let x = ((x * 2 + W + 1) * TW / 2 + dx) % (W * TW); heatmap.put_pixel(x, y, rgb); } } } } // Save the heatmap image. heatmap.save("heatmap.png").unwrap(); }