summary refs log tree commit diff homepage
path: root/2016/src/bin/day11.rs
blob: c03376609a23d9bc72d432f62e2e78cb7c1a5aea (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
use std::collections::{HashSet, VecDeque};

#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
enum Object {
    Microchip(u8),
    Generator(u8),
}

impl Object {
    fn is_microchip(self) -> bool {
        match self {
            Object::Microchip(_) => true,
            _ => false,
        }
    }

    fn is_generator(self) -> bool {
        match self {
            Object::Generator(_) => true,
            _ => false,
        }
    }

    fn generator(self) -> Self {
        match self {
            Object::Microchip(k) => Object::Generator(k),
            _ => self,
        }
    }
}

#[derive(Default, Clone)]
struct Floor {
    objects: HashSet<Object>,
}

impl Floor {
    fn is_empty(&self) -> bool {
        self.objects.is_empty()
    }

    fn is_safe(&self) -> bool {
        for &chip in self.objects.iter().filter(|&&o| o.is_microchip()) {
            let accompanied = self.objects.contains(&chip.generator());
            let generator = self.objects.iter().any(|&o| o.is_generator());
            if !accompanied && generator { return false }
        }
        true
    }
}

#[derive(Clone)]
struct State {
    steps: u32,
    floors: Box<[Floor]>,
    elevator: usize,
}

impl State {
    fn is_goal(&self) -> bool {
        self.floors[0..3].iter().all(Floor::is_empty)
    }

    fn is_safe(&self) -> bool {
        self.floors.iter().all(Floor::is_safe)
    }

    fn clone_up(&self) -> Self {
        let mut state = self.clone();
        state.steps += 1;
        state.elevator += 1;
        state
    }

    fn clone_down(&self) -> Self {
        let mut state = self.clone();
        state.steps += 1;
        state.elevator -= 1;
        state
    }

    fn generate_states(&self, states: &mut VecDeque<State>) {
        for &object in &self.floors[self.elevator].objects {
            for &other in &self.floors[self.elevator].objects {
                if other == object { continue }
                if self.elevator != 3 {
                    let mut state = self.clone_up();
                    state.floors[self.elevator].objects.remove(&object);
                    state.floors[self.elevator].objects.remove(&other);
                    state.floors[state.elevator].objects.insert(object);
                    state.floors[state.elevator].objects.insert(other);
                    if state.is_safe() { states.push_back(state) }
                }
                if self.elevator != 0 {
                    let mut state = self.clone_down();
                    state.floors[self.elevator].objects.remove(&object);
                    state.floors[self.elevator].objects.remove(&other);
                    state.floors[state.elevator].objects.insert(object);
                    state.floors[state.elevator].objects.insert(other);
                    if state.is_safe() { states.push_back(state) }
                }
            }

            if self.elevator != 3 {
                let mut state = self.clone_up();
                state.floors[self.elevator].objects.remove(&object);
                state.floors[state.elevator].objects.insert(object);
                if state.is_safe() { states.push_back(state) }
            }
            if self.elevator != 0 {
                let mut state = self.clone_down();
                state.floors[self.elevator].objects.remove(&object);
                state.floors[state.elevator].objects.insert(object);
                if state.is_safe() { states.push_back(state) }
            }
        }
    }
}

fn solve(floors: Vec<Floor>) -> u32 {
    let mut visited = HashSet::new();
    let mut states = VecDeque::new();
    states.push_back(State { steps: 0, floors: floors.into_boxed_slice(), elevator: 0 });

    while let Some(state) = states.pop_front() {
        if state.is_goal() {
            return state.steps;
        }
        let visit_floors: Vec<_> = state.floors.iter().map(|floor| {
            let mut vec: Vec<_> = floor.objects.iter().cloned().collect();
            vec.sort();
            vec
        }).collect();
        if visited.insert((state.elevator, visit_floors)) {
            state.generate_states(&mut states);
        }
    }

    unreachable!()
}

fn main() {
    // The first floor contains a promethium generator and a promethium-compatible microchip.
    // The second floor contains a cobalt generator, a curium generator, a ruthenium generator, and a plutonium generator.
    // The third floor contains a cobalt-compatible microchip, a curium-compatible microchip, a ruthenium-compatible microchip, and a plutonium-compatible microchip.
    // The fourth floor contains nothing relevant.
    const PROMETHIUM: u8 = 0;
    const COBALT: u8 = 1;
    const CURIUM: u8 = 2;
    const RUTHENIUM: u8 = 3;
    const PLUTONIUM: u8 = 4;
    let mut floors = vec![Floor::default(); 4];
    floors[0].objects.insert(Object::Generator(PROMETHIUM));
    floors[0].objects.insert(Object::Microchip(PROMETHIUM));
    floors[1].objects.insert(Object::Generator(COBALT));
    floors[1].objects.insert(Object::Generator(CURIUM));
    floors[1].objects.insert(Object::Generator(RUTHENIUM));
    floors[1].objects.insert(Object::Generator(PLUTONIUM));
    floors[2].objects.insert(Object::Microchip(COBALT));
    floors[2].objects.insert(Object::Microchip(CURIUM));
    floors[2].objects.insert(Object::Microchip(RUTHENIUM));
    floors[2].objects.insert(Object::Microchip(PLUTONIUM));

    println!("Part 1: {}", solve(floors.clone()));


    // An elerium generator.
    // An elerium-compatible microchip.
    // A dilithium generator.
    // A dilithium-compatible microchip.
    const ELERIUM: u8 = 5;
    const DILITHIUM: u8 = 6;
    floors[0].objects.insert(Object::Generator(ELERIUM));
    floors[0].objects.insert(Object::Microchip(ELERIUM));
    floors[0].objects.insert(Object::Generator(DILITHIUM));
    floors[0].objects.insert(Object::Microchip(DILITHIUM));
    println!("Part 2: {}", solve(floors));
}

#[test]
#[ignore]
fn part1() {
    // The first floor contains a hydrogen-compatible microchip and a lithium-compatible microchip.
    // The second floor contains a hydrogen generator.
    // The third floor contains a lithium generator.
    // The fourth floor contains nothing relevant.
    let mut floors = vec![Floor::default(); 4];
    floors[0].objects.insert(Object::Microchip(0));
    floors[0].objects.insert(Object::Microchip(1));
    floors[1].objects.insert(Object::Generator(0));
    floors[2].objects.insert(Object::Generator(1));

    assert_eq!(11, solve(floors));
}